If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-2t-40=0
a = 1; b = -2; c = -40;
Δ = b2-4ac
Δ = -22-4·1·(-40)
Δ = 164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{164}=\sqrt{4*41}=\sqrt{4}*\sqrt{41}=2\sqrt{41}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{41}}{2*1}=\frac{2-2\sqrt{41}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{41}}{2*1}=\frac{2+2\sqrt{41}}{2} $
| 7x-3(2x+5)=13 | | 7x-3(2x+5)=1/ | | 5t^2-2t-40=0 | | 7+7n=5n+7 | | -5x+7=-7x-5 | | -3y-32=6y=13 | | |x+3|+4=5 | | 3+3x=-4x+73 | | 2x+4=12+7x+1 | | |2-3x|+6=20 | | n/18=10 | | 2(x-12)-3=23x-90 | | 5(3y-18)+3y=30 | | 100-4u/3=5u/4+6 | | 4(y+5)-20=10 | | 2(k²-3k+2)=0 | | 2x+8=-4x-5 | | 6x-5=x=17 | | x/38=-16+28 | | 5y2+18=63 | | 9=-5v+3(v-3) | | b-8.25=-18.5 | | 5u+6(u+6)=-30 | | 1=-7y+2(y-2) | | 4(f-8)=24 | | 5w^2-6w+12=0 | | 4(f-8)=25 | | b-8.25=-14.5 | | 1/2(8-x)=3/4(6x-8) | | (4x-4)+(2x+6)=90 | | (4x-4)+(2x+6)=180 | | 4d^2+9-36=0 |